Publication Date





Liposomes as carriers for CRISPR/Cas9 complexes represent an attractive approach for cardiovascular gene therapy. A critical barrier to this approach remains the efficient delivery of CRISPR-based genetic materials into cardiomyocytes. Echogenic liposomes (ELIP) containing a fluorescein isothiocyanate-labeled decoy oligodeoxynucleotide against nuclear factor kappa B (ELIP-NF-κB-FITC) were used both in vitro on mouse neonatal ventricular myocytes and in vivo on rat hearts to assess gene delivery efficacy with or without ultrasound. In vitro analysis was then repeated with ELIP containing Cas9-sg-IL1RL1 (interleukin 1 receptor-like 1) RNA to determine the efficiency of gene knockdown. ELIP-NF-κB-FITC without ultrasound showed limited gene delivery in vitro and in vivo, but ultrasound combined with ELIP notably improved penetration into heart cells and tissues. When ELIP was used to deliver Cas9-sg-IL1RL1 RNA, gene editing was successful and enhanced by ultrasound. This innovative approach shows promise for heart disease gene therapy using CRISPR technology.


echogenic liposomes (ELIP), CRISPR, single-guide RNA, gene editing, gene delivery



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.