Faculty and Staff Publications
Publication Date
9-1-2019
Journal
American Journal of Physiology-Cell Physiology
Abstract
Sustained elevation of sympathetic activity is an important contributor to pathological cardiac hypertrophy, ventricular arrhythmias, and left ventricular contractile dysfunction in chronic heart failure. The orphan nuclear receptor NR4A2 is an immediate early-response gene activated in the heart under β-adrenergic stimulation. The goal of this study was to identify the transcriptional remodeling events induced by increased NR4A2 expression in cardiomyocytes and their impact on the physiological response of those cells to sustained β-adrenergic stimulation. Treatment of adult rat ventricular myocytes with isoproterenol induced a rapid (<4 >h) increase in NR4A2 levels that was accompanied by a transient (<24 >h) increase in nuclear localization of the transcription factor. Adenovirus-mediated overexpression of NR4A2 to similar levels modulated the expression of genes linked to adrenoceptor signaling, calcium signaling, cell growth and proliferation and counteracted the increase in protein synthesis rate and cell surface area mediated by chronic isoproterenol stimulation. Consistent with those findings, NR4A2 overexpression also blocked the phosphorylative activation of growth-related kinases ERK1/2, Akt, and p70 S6 kinase. Prominent among the transcriptional changes induced by NR4A2 was the upregulation of the dual-specificity phosphatases DUSP2 and DUSP14, two known inhibitors of ERK1/2. Pretreatment of NR4A2-overexpressing cardiomyocytes with the DUSP inhibitor BCI [(
Keywords
Adrenergic beta-Agonists, Age Factors, Animals, Cell Proliferation, Cells, Cultured, MAP Kinase Signaling System, Male, Myocytes, Cardiac, Nuclear Receptor Subfamily 4, Group A, Member 2, Rats, Rats, Sprague-Dawley, Receptors, Adrenergic, beta