Student and Faculty Publications
Publication Date
11-17-2023
Journal
iScience
Abstract
Understanding the factors that regulate T cell infiltration and functional states in solid tumors is crucial for advancing cancer immunotherapies. Here, we discovered that the expression of interferon regulatory factor 4 (IRF4) was a critical T cell intrinsic requirement for effective anti-tumor immunity. Mice with T-cell-specific ablation of IRF4 showed significantly reduced T cell tumor infiltration and function, resulting in accelerated growth of subcutaneous syngeneic tumors and allowing the growth of allogeneic tumors. Additionally, engineered overexpression of IRF4 in anti-tumor CD8+ T cells that were adoptively transferred significantly promoted their tumor infiltration and transition from a naive/memory-like cell state into effector T cell states. As a result, IRF4-engineered anti-tumor T cells exhibited significantly improved anti-tumor efficacy, and inhibited tumor growth either alone or in combination with PD-L1 blockade. These findings identify IRF4 as a crucial cell-intrinsic driver of T cell infiltration and function in tumors, emphasizing the potential of IRF4-engineering as an immunotherapeutic approach.
Keywords
Molecular biology, Immunology, Cell biology, Cancer
Included in
Biomedical Informatics Commons, Medical Cell Biology Commons, Medical Molecular Biology Commons, Oncology Commons
Comments
Supplementary Materials
PMID: 37860697