Faculty and Staff Publications
Publication Date
6-4-2023
Journal
Genes
Abstract
Genetic variation in the mitochondrial genome is linked to important biological functions and various human diseases. Recent progress in single-cell genomics has established single-cell RNA sequencing (scRNAseq) as a popular and powerful technique to profile transcriptomics at the cellular level. While most studies focus on deciphering gene expression, polymorphisms including mitochondrial variants can also be readily inferred from scRNAseq. However, limited attention has been paid to investigate the single-cell landscape of mitochondrial variants, despite the rapid accumulation of scRNAseq data in the community. In addition, a diploid context is assumed for most variant calling tools, which is not appropriate for mitochondrial heteroplasmies. Here, we introduce MitoTrace, an R package for the analysis of mitochondrial genetic variation in bulk and scRNAseq data. We applied MitoTrace to several publicly accessible data sets and demonstrated its ability to robustly recover genetic variants from scRNAseq data. We also validated the applicability of MitoTrace to scRNAseq data from diverse platforms. Overall, MitoTrace is a powerful and user-friendly tool to investigate mitochondrial variants from scRNAseq data.
Keywords
Humans, Mitochondria, Genomics, Gene Expression Profiling, Polymorphism, Genetic, Sequence Analysis, RNA
Comments
PMID: 37372402