Faculty and Staff Publications

Publication Date

11-8-2022

Journal

Proceedings of the National Academy of Sciences of the United States of America

Abstract

Quantifying the intrinsic mechanical properties of two-dimensional (2D) materials is essential to predict the long-term reliability of materials and systems in emerging applications ranging from energy to health to next-generation sensors and electronics. Currently, measurements of fracture toughness and identification of associated atomistic mechanisms remain challenging. Herein, we report an integrated experimental-computational framework in which in-situ high-resolution transmission electron microscopy (HRTEM) measurements of the intrinsic fracture energy of monolayer MoS

Keywords

atomistic measurements, fracture energy, transition metal dichalcogenide, atomistic J integral, bond dissociation

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.