Faculty and Staff Publications

Publication Date

9-6-2023

Journal

Nature Communications

Abstract

A charge order (CO) with a wavevector [Formula: see text] is observed in infinite-layer nickelates. Here we use first-principles calculations to demonstrate a charge-transfer-driven CO mechanism in infinite-layer nickelates, which leads to a characteristic Ni1+-Ni2+-Ni1+ stripe state. For every three Ni atoms, due to the presence of near-Fermi-level conduction bands, Hubbard interaction on Ni-d orbitals transfers electrons on one Ni atom to conduction bands and leaves electrons on the other two Ni atoms to become more localized. We further derive a low-energy effective model to elucidate that the CO state arises from a delicate competition between Hubbard interaction on Ni-d orbitals and charge transfer energy between Ni-d orbitals and conduction bands. With physically reasonable parameters, [Formula: see text] CO state is more stable than uniform paramagnetic state and usual checkerboard antiferromagnetic state. Our work highlights the multi-band nature of infinite-layer nickelates, which leads to some distinctive correlated properties that are not found in cuprates.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.