Faculty and Staff Publications
Publication Date
6-1-2023
Journal
IEEE International Conference on Healthcare Informatics (ICHI)
Abstract
Alzheimer's disease (AD) is one of the leading causes of death in the United States, especially among the elderly. Recent studies have shown how hypertension is related to cognitive decline in elderly patients, which in turn leads to increased mortality as well as morbidity. There have been various studies that have looked at the effect of antihypertensive drugs in reducing cognitive decline, and their results have proved inconclusive. However, most of these studies assume the treatment effect is similar for all patients, thus considering only the average treatment effects of antihypertensive drugs. In this paper, we assume that the effect of antihypertensives on the onset of AD depends on patient characteristics. We develop a deep learning method called LASSO-Dragonnet to estimate the individualized treatment effects of each patient. We considered six antihypertensive drugs, and each of the six models considered one of the drugs as the treatment and the remaining as control. Our studies showed that although many antihypertensives have a positive impact in delaying AD onset on average, the impact varies from individual to individual, depending on their various characteristics. We also analyzed the importance of various covariates in such an estimation. Our results showed that the individualized treatment effects of each patient could be estimated accurately using a deep learning method, and that the importance of various covariates could be determined.
Keywords
Alzheimer’s Disease, Heterogeneous Treatment Effects, Causal Inference
Included in
Biomedical Informatics Commons, Cognitive Science Commons, Mental and Social Health Commons, Neurosciences Commons
Comments
PMID: 38516035