Faculty, Staff and Student Publications

Publication Date

5-1-2025

Journal

Journal of Allergy and Clinical Immunology: Global

Abstract

BACKGROUND: Childhood asthma often continues into adulthood, but some children experience remission. Utilizing electronic health records (EHRs) to predict asthma prognosis can aid health care providers and patients in developing effective prioritized care plans.

OBJECTIVE: We aimed to develop artificial intelligence (AI) models using various clinical variables extracted from EHRs to predict childhood asthma prognosis (remission vs no remission) in different age groups.

METHODS: We developed AI models utilizing patients' EHRs during the first 6, 9, or 12 years of their lives to predict their asthma prognosis status at ages 6 to 9, 9 to 12, or 12 to 15 years, respectively. We first developed the models based on a manually annotated birth cohort (n = 900). We then leveraged a larger birth cohort (n = 29,594) labeled automatically (with weak labels) by a previously validated natural language processing algorithm for asthma prognosis. Different models (logistic regression, random forest, and XGBoost [eXtreme Gradient Boosting]) were tested with diverse clinical variables from structured and unstructured EHRs.

RESULTS: The best AI models of each age group produced a prediction performance with areas under the receiver operating characteristic curve ranging from 0.85 to 0.93. The prediction model at age 12 showed the highest performance. Most of the AI models with weak labels showed enhanced performance, and models using the top 10 variables performed similarly to those using all of the variables.

CONCLUSIONS: The AI models effectively predicted asthma prognosis for children by using EHRs with a relatively small number of variables. This approach demonstrates the potential to enhance prioritized care plans and patient education, improving disease management and quality of life for asthmatic patients.

Keywords

Asthma, asthma prognosis, natural language processing, artificial intelligence, machine learning, electronic health records, dynamic variables

DOI

10.1016/j.jacig.2025.100429

PMID

40091884

PMCID

PMC11908553

PubMedCentral® Posted Date

1-31-2025

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.