Journal Articles

Publication Date



JMIR Public Health and Surveillance


BACKGROUND: Opioid-related overdose mortality has remained at crisis levels across the United States, increasing 5-fold and worsened during the COVID-19 pandemic. The ability to provide forecasts of opioid-related mortality at granular geographical and temporal scales may help guide preemptive public health responses. Current forecasting models focus on prediction on a large geographical scale, such as states or counties, lacking the spatial granularity that local public health officials desire to guide policy decisions and resource allocation.

OBJECTIVE: The overarching objective of our study was to develop Bayesian spatiotemporal dynamic models to predict opioid-related mortality counts and rates at temporally and geographically granular scales (ie, ZIP Code Tabulation Areas [ZCTAs]) for Massachusetts.

METHODS: We obtained decedent data from the Massachusetts Registry of Vital Records and Statistics for 2005 through 2019. We developed Bayesian spatiotemporal dynamic models to predict opioid-related mortality across Massachusetts' 537 ZCTAs. We evaluated the prediction performance of our models using the one-year ahead approach. We investigated the potential improvement of prediction accuracy by incorporating ZCTA-level demographic and socioeconomic determinants. We identified ZCTAs with the highest predicted opioid-related mortality in terms of rates and counts and stratified them by rural and urban areas.

RESULTS: Bayesian dynamic models with the full spatial and temporal dependency performed best. Inclusion of the ZCTA-level demographic and socioeconomic variables as predictors improved the prediction accuracy, but only in the model that did not account for the neighborhood-level spatial dependency of the ZCTAs. Predictions were better for urban areas than for rural areas, which were more sparsely populated. Using the best performing model and the Massachusetts opioid-related mortality data from 2005 through 2019, our models suggested a stabilizing pattern in opioid-related overdose mortality in 2020 and 2021 if there were no disruptive changes to the trends observed for 2005-2019.

CONCLUSIONS: Our Bayesian spatiotemporal models focused on opioid-related overdose mortality data facilitated prediction approaches that can inform preemptive public health decision-making and resource allocation. While sparse data from rural and less populated locales typically pose special challenges in small area predictions, our dynamic Bayesian models, which maximized information borrowing across geographic areas and time points, were used to provide more accurate predictions for small areas. Such approaches can be replicated in other jurisdictions and at varying temporal and geographical levels. We encourage the formation of a modeling consortium for fatal opioid-related overdose predictions, where different modeling techniques could be ensembled to inform public health policy.


United States, Humans, Analgesics, Opioid, Bayes Theorem, Pandemics, COVID-19, Public Policy

Included in

Public Health Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.