Faculty, Staff and Student Publications

Publication Date

4-15-2024

Journal

Biostatistics

Abstract

In this study, a longitudinal regression model for covariance matrix outcomes is introduced. The proposal considers a multilevel generalized linear model for regressing covariance matrices on (time-varying) predictors. This model simultaneously identifies covariate-associated components from covariance matrices, estimates regression coefficients, and captures the within-subject variation in the covariance matrices. Optimal estimators are proposed for both low-dimensional and high-dimensional cases by maximizing the (approximated) hierarchical-likelihood function. These estimators are proved to be asymptotically consistent, where the proposed covariance matrix estimator is the most efficient under the low-dimensional case and achieves the uniformly minimum quadratic loss among all linear combinations of the identity matrix and the sample covariance matrix under the high-dimensional case. Through extensive simulation studies, the proposed approach achieves good performance in identifying the covariate-related components and estimating the model parameters. Applying to a longitudinal resting-state functional magnetic resonance imaging data set from the Alzheimer's Disease (AD) Neuroimaging Initiative, the proposed approach identifies brain networks that demonstrate the difference between males and females at different disease stages. The findings are in line with existing knowledge of AD and the method improves the statistical power over the analysis of cross-sectional data.

Keywords

Male, Female, Humans, Models, Statistical, Cross-Sectional Studies, Likelihood Functions, Computer Simulation, Brain

DOI

10.1093/biostatistics/kxac045

PMID

36451549

PMCID

PMC11650757

PubMedCentral® Posted Date

12-1-2022

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Included in

Public Health Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.