Faculty, Staff and Student Publications

Publication Date

7-1-2023

Journal

Journal of Applied Clinical Medical Physics

Abstract

PURPOSE: Variability in contouring contributes to large variations in radiation therapy planning and treatment outcomes. The development and testing of tools to automatically detect contouring errors require a source of contours that includes well-understood and realistic errors. The purpose of this work was to develop a simulation algorithm that intentionally injects errors of varying magnitudes into clinically accepted contours and produces realistic contours with different levels of variability.

METHODS: We used a dataset of CT scans from 14 prostate cancer patients with clinician-drawn contours of the regions of interest (ROI) of the prostate, bladder, and rectum. Using our newly developed Parametric Delineation Uncertainties Contouring (PDUC) model, we automatically generated alternative, realistic contours. The PDUC model consists of the contrast-based DU generator and a 3D smoothing layer. The DU generator transforms contours (deformation, contraction, and/or expansion) as a function of image contrast. The generated contours undergo 3D smoothing to obtain a realistic look. After model building, the first batch of auto-generated contours was reviewed. Editing feedback from the reviews was then used in a filtering model for the auto-selection of clinically acceptable (minor-editing) DU contours.

RESULTS: Overall, C values of 5 and 50 consistently produced high proportions of minor-editing contours across all ROI compared to the other C values (0.936

DISCUSSION: The proposed methodology and subsequent results are promising and could have a great impact on treatment planning by generating mathematically simulated alternative structures that are clinically relevant and realistic enough (i.e., similar to clinician-drawn contours) to be used in quality control of radiation therapy.

Keywords

Male, Humans, Prostatic Neoplasms, Tomography, X-Ray Computed, Prostate, Rectum, Urinary Bladder, Radiotherapy Planning, Computer-Assisted

DOI

10.1002/acm2.13970

PMID

37078392

PMCID

PMC10338799

PubMedCentral® Posted Date

4-20-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.