Date of Graduation


Document Type

Dissertation (PhD)

Program Affiliation

Microbiology and Molecular Genetics

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Danielle Garsin, Ph.D.

Committee Member

Theresa M. Koehler, Ph.D.

Committee Member

Barbara E. Murray, M.D.

Committee Member

Ann-Bin Shyu, Ph.D.

Committee Member

Ambro van Hoof, Ph.D.


Enterococcus faecalis is a Gram-positive bacterium that lives as a commensal organism in the mammalian gastrointestinal tract, but can behave as an opportunistic pathogen. Our lab discovered that mutation of the eutK gene attenuates virulence of E. faecalis in the C. elegans model host. eutK is part of the ethanolamine metabolic pathway which was previously unknown in E. faecalis. I discovered the presence of two unique posttranscriptional regulatory features that control expression of eut locus genes. The first feature I found is an AdoCBL riboswitch, a cis-acting RNA regulatory element that acts as a positive regulator of gene expression. The second feature I discovered is a unique two-component system, EutVW. The EutV response regulator contains an ANTAR family domain, which binds RNA to trigger transcriptional antitermination. I determined that induction of expression of several genes in the eut locus is dependent on ethanolamine, AdoCBL and the two-component system. AdoCBL and ethanolamine are both required for induction of eut locus gene expression. Additionally, I discovered eutG is regulated by a unique mechanism of antitermination. Both the AdoCBL riboswitch and EutV response regulator control the expression of the downstream gene eutG. EutV potentially acts through a novel antitermination mechanism in which a dimer of EutV binds to a pair of mRNA stem loops forming an antitermination complex. My data show a unique mechanism by which two environmental signals are integrated by two different posttranscriptional regulators to regulate a single locus.


Enterococcus faecalis, riboswitch, two-component system, ethanolamine