Date of Graduation
12-2012
Document Type
Dissertation (PhD)
Program Affiliation
Microbiology and Molecular Genetics
Degree Name
Doctor of Philosophy (PhD)
Advisor/Committee Chair
Ambro van Hoof, Ph.D.
Committee Member
Eric J. Wagner, Ph.D.
Committee Member
Michael Lorenz, Ph.D.
Committee Member
Kevin Morano, Ph.D.
Committee Member
William Margolin, Ph.D.
Abstract
RNA processing and degradation are two important functions that control gene expression and promote RNA fidelity in the cell. A major ribonuclease complex, called the exosome, is involved in both of these processes. The exosome is composed of ten essential proteins with only one catalytically active subunit, called Rrp44. While the same ten essential subunits make up both the nuclear and cytoplasmic exosome, there are nuclear and cytoplasmic exosome cofactors that promote specific exosome functions in each of the cell compartments. To date, it is unclear how the exosome distinguishes between RNA substrates. We hypothesize that compartment specific cofactors may promote the substrate specificity of the exosome.
In this work, I characterize several cofactors of the exosome, both nuclear and cytoplasmic. First, I describe the arch domain, which is a unique domain in a nuclear and a cytoplasmic cofactor of the exosome. Specifically, I show that the arch domain of the nuclear exosome cofactor, Mtr4, is required for specific exosome-mediated activities and overlaps functionally with the exosome-associated exonuclease, Rrp6. Further, I show that the arch domain of Ski2 is required for the degradation of normal and aberrant mRNAs.
Additionally, this work describes in detail the Mtr4 domains involved in the physical association with other RNA processing proteins. Further, I characterize the minimal Mtr4-binding region in a third exosome cofactor, Trf5.
Understanding how exosome cofactors synergistically promote exosome function will provide us a better understanding of how the exosome complex precisely regulates its catalytic activities. As described here, cofactors play a major role in determining the substrate specificity of the nuclear and cytoplasmic exosome. Moreover, specific accessory domains, which are not involved in the catalytic function of the cofactor, are required for substrate targeting of the eukaryotic RNA exosome.
Keywords
Mtr4, Ski2, helicases, exosome, Rrp6, TRAMP, Trf5, RNA processing
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Genetics Commons, Medicine and Health Sciences Commons, Molecular Genetics Commons, Other Microbiology Commons