Date of Graduation


Document Type

Thesis (MS)

Program Affiliation

Biomedical Sciences

Degree Name

Masters of Science (MS)

Advisor/Committee Chair

Sheng Zhang

Committee Member

Joseph Alcorn

Committee Member

Eric Swindell

Committee Member

Kartik Venkatachalam

Committee Member

Eric Wagner


A common pathological hallmark of most neurodegenerative disorders is the presence of protein aggregates in the brain. Understanding the regulation of aggregate formation is thus important for elucidating disease pathogenic mechanisms and finding effective preventive avenues and cures. Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a selective neurodegenerative disorder predominantly affecting motor neurons. The majority of ALS cases are sporadic, however, mutations in superoxide dismutase 1 (SOD1) are responsible for about 20% of familial ALS (fALS). Mutated SOD1 proteins are prone to misfold and form protein aggregates, thus representing a good candidate for studying aggregate formation.

The long-term goal of this project is to identify regulators of aggregate formation by mutant SOD1 and other ALS-associated disease proteins. The specific aim of this thesis project is to assess the possibility of using the well-established Drosophila model system to study aggregation by human SOD1 (hSOD1) mutants. To this end, using wild type and the three mutant hSOD1 (A4V, G85R and G93A) most commonly found among fALS, I have generated 16 different SOD1 constructs containing either eGFP or mCherry in-frame fluorescent reporters, established and tested both cell- and animal-based Drosophila hSOD1 models. The experimental strategy allows for clear visualization of ectopic hSOD1 expression as well as versatile co-expression schemes to fully investigate protein aggregation specifically by mutant hSOD1.

I have performed pilot cell-transfection experiments and verified induced expression of hSOD1 proteins. Using several tissue- or cell type-specific Gal4 lines, I have confirmed the proper expression of hSOD1 from established transgenic fly lines. Interestingly, in both Drosophila S2 cells and different fly tissues including the eye and motor neurons, robust aggregate formation by either wild type or mutant hSOD1 proteins was not observed. These preliminary observations suggest that Drosophila might not be a good experimental organism to study aggregation and toxicity of mutant hSOD1 protein. Nevertheless this preliminary conclusion implies the potential existence of a potent protective mechanism against mutant hSOD1 aggregation and toxicity in Drosophila.

Thus, results from my SOD1-ALS project in Drosophila will help future studies on how to best employ this classic model organism to study ALS and other human brain degenerative diseases.


Amyotrophic Lateral Sclerosis, Neurodegeneration, SOD1, Motor neuron disease, Aggregate, Excitotoxicity, Superoxide dismutase, Drosophila, ALS, GFP