Publication Date

2-7-2023

Journal

Journal of the American Heart Association

DOI

10.1161/JAHA.122.027649

PMID

36688362

PMCID

PMC9973623

PubMedCentral® Posted Date

1-23-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Humans, Peripheral Arterial Disease, Magnetic Resonance Imaging, Intermittent Claudication, Leg, Muscle, Skeletal, Perfusion, computational microvascular model, magnetic resonance imaging, microvascular perfusion, peripheral artery disease

Abstract

Background

Computational fluid dynamics has shown good agreement with contrast‐enhanced magnetic resonance imaging measurements in cardiovascular disease applications. We have developed a biomechanical model of microvascular perfusion using contrast‐enhanced magnetic resonance imaging signal intensities derived from skeletal calf muscles to study peripheral artery disease (PAD).

Methods and Results

The computational microvascular model was used to study skeletal calf muscle perfusion in 56 individuals (36 patients with PAD, 20 matched controls). The recruited participants underwent contrast‐enhanced magnetic resonance imaging and ankle‐brachial index testing at rest and after 6‐minute treadmill walking. We have determined associations of microvascular model parameters including the transfer rate constant, a measure of vascular leakiness; the interstitial permeability to fluid flow which reflects the permeability of the microvasculature; porosity, a measure of the fraction of the extracellular space; the outflow filtration coefficient; and the microvascular pressure with known markers of patients with PAD. Transfer rate constant, interstitial permeability to fluid flow, and microvascular pressure were higher, whereas porosity and outflow filtration coefficient were lower in patients with PAD than those in matched controls (all P values ≤0.014). In pooled analyses of all participants, the model parameters (transfer rate constant, interstitial permeability to fluid flow, porosity, outflow filtration coefficient, microvascular pressure) were significantly associated with the resting and exercise ankle‐brachial indexes, claudication onset time, and peak walking time (all P values ≤0.013). Among patients with PAD, interstitial permeability to fluid flow, and microvascular pressure were higher, while porosity and outflow filtration coefficient were lower in treadmill noncompleters compared with treadmill completers (all P values ≤0.001).

Conclusions

Computational microvascular model parameters differed significantly between patients with PAD and matched controls. Thus, computational microvascular modeling could be of interest in studying lower extremity ischemia.

Comments

Associated Data

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.