Publication Date

8-26-2022

Journal

Science Advances

DOI

10.1126/sciadv.abq2945

PMID

36001654

PMCID

PMC9401620

PubMedCentral® Posted Date

8-24-2022

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Animals, Humans, Male, Mice, Cell Cycle Proteins, Mammals, Meiosis, Mice, Knockout, RNA Helicases, RNA-Binding Proteins, Spermatogenesis, Testis

Abstract

Meiosis entry during spermatogenesis requires reprogramming from mitotic to meiotic gene expression profiles. Transcriptional regulation has been extensively studied in meiosis entry, but gain of function for master transcription factors is insufficient to down-regulate mitotic genes. RNA helicase YTHDC2 and its partner MEIOC emerge as essential posttranscriptional regulators of meiotic entry. However, it is unclear what governs the RNA binding specificity of YTHDC2/MEIOC. Here, we identified RNA binding protein RBM46 as a component of the YTHDC2/MEIOC complex. Testis-specific Rbm46 knockout in mice causes infertility with defective mitotic-to-meiotic transition, phenocopying global Ythdc2 or Meioc knockout. RBM46 binds to 3′ UTR of mitotic transcripts within 100 nucleotides from YTHDC2 U-rich motifs and targets these transcripts for degradation. Dysregulated RBM46 expression is associated with human male fertility disorders. These findings establish the RBM46/YTHDC2/MEIOC complex as the major posttranscriptional regulator responsible for down-regulating mitotic transcripts during meiosis entry in mammalian spermatogenesis, with implications for understanding meiosis-related fertility disorders.

Comments

Associated Data

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.