Publication Date
2-23-2024
Journal
npj Precision Oncology
DOI
10.1038/s41698-024-00531-y
PMID
38396241
PMCID
PMC10891127
PubMedCentral® Posted Date
2-23-2024
PubMedCentral® Full Text Version
Post-Print
Published Open-Access
yes
Keywords
Mesothelioma, Non-small-cell lung cancer
Abstract
Malignant pleural mesothelioma (MPM) is a rare but lethal pleural cancer with high intratumor heterogeneity (ITH). A recent study in lung adenocarcinoma has developed a clonal gene signature (ORACLE) from multiregional transcriptomic data and demonstrated high prognostic values and reproducibility. However, such a strategy has not been tested in other types of cancer with high ITH. We aimed to identify biomarkers from multi-regional data to prognostically stratify MPM patients. We generated a multiregional RNA-seq dataset for 78 tumor samples obtained from 26 MPM patients, each with one sample collected from a superior, lateral, and inferior region of the tumor. By integrating this dataset with the Cancer Genome Atlas MPM RNA-seq data, we selected 29 prognostic genes displaying high variability across different tumors but low ITH, which named PRACME (Prognostic Risk Associated Clonal Mesothelioma Expression). We evaluated PRACME in two independent MPM datasets and demonstrated its prognostic values. Patients with high signature scores are associated with poor prognosis after adjusting established clinical factors. Interestingly, the PRACME and the ORACLE signatures defined respectively from MPM and lung adenocarcinoma cross-predict prognosis between the two cancer types. Further investigation indicated that the cross-prediction ability might be explained by the high similarity between the two cancer types in their genomic regions with copy number variation, which host many clonal genes. Overall, our clonal signature PRACME provided prognostic stratification in MPM and this study emphasized the importance of multi-regional transcriptomic data for prognostic stratification based on clonal genes.
Included in
Diseases Commons, Epidemiology Commons, Medical Sciences Commons, Oncology Commons, Pulmonology Commons
Comments
Associated Data