Publication Date

11-14-2022

Journal

Nature Communications

DOI

10.1038/s41467-022-34574-1

PMID

36376291

PMCID

PMC9663519

PubMedCentral® Posted Date

11-14-2022

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Inositol 1, 4, 5-Trisphosphate Receptors, Calcium, Ligands, Protein Domains, Inositol 1, 4, 5-Trisphosphate, Calcium Signaling, Ligand-gated ion channels, Cryoelectron microscopy, Ion transport, Calcium channels

Abstract

Inositol-1,4,5-trisphosphate receptors (IP3Rs) are activated by IP3 and Ca2+ and their gating is regulated by various intracellular messengers that finely tune the channel activity. Here, using single particle cryo-EM analysis we determined 3D structures of the nanodisc-reconstituted IP3R1 channel in two ligand-bound states. These structures provide unprecedented details governing binding of IP3, Ca2+ and ATP, revealing conformational changes that couple ligand-binding to channel opening. Using a deep-learning approach and 3D variability analysis we extracted molecular motions of the key protein domains from cryo-EM density data. We find that IP3 binding relies upon intrinsic flexibility of the ARM2 domain in the tetrameric channel. Our results highlight a key role of dynamic side chains in regulating gating behavior of IP3R channels. This work represents a stepping-stone to developing mechanistic understanding of conformational pathways underlying ligand-binding, activation and regulation of the channel.

Comments

Associated Data

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.