Publication Date

9-1-2022

Journal

Journal of Structural Biology

DOI

10.1016/j.jsb.2022.107875

PMID

35724904

PMCID

PMC9645247

PubMedCentral® Posted Date

9-1-2023

PubMedCentral® Full Text Version

Author MSS

Published Open-Access

yes

Keywords

Automation, Cryoelectron Microscopy, Data Collection, Data Compression

Abstract

With larger, higher speed detectors and improved automation, individual CryoEM instruments are capable of producing a prodigious amount of data each day, which must then be stored, processed and archived. While it has become routine to use lossless compression on raw counting-mode movies, the averages which result after correcting these movies no longer compress well. These averages could be considered sufficient for long term archival, yet they are conventionally stored with 32 bits of precision, despite high noise levels. Derived images are similarly stored with excess precision, providing an opportunity to decrease project sizes and improve processing speed. We present a simple argument based on propagation of uncertainty for safe bit truncation of flat-fielded images combined with lossless compression. The same method can be used for most derived images throughout the processing pipeline. We test the proposed strategy on two standard, data-limited CryoEM data sets, demonstrating that these limits are safe for real-world use. We find that 5 bits of precision is sufficient for virtually any raw CryoEM data and that 8-12 bits is sufficient for intermediate averages or final 3-D structures. Additionally, we detail and recommend specific rules for discretization of data as well as a practical compressed data representation that is tuned to the specific needs of CryoEM.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.