Publication Date
11-18-2023
Journal
npj Precision Oncology
DOI
10.1038/s41698-023-00467-9
PMID
37980380
PMCID
PMC10657397
PubMedCentral® Posted Date
11-18-2023
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Keywords
Molecular medicine, Diagnostic markers, Urological cancer
Abstract
The rising utilization of circulating tumor DNA (ctDNA) assays in Precision Oncology may incidentally detect genetic material from secondary sources. It is important that such findings are recognized and properly leveraged for both diagnosis and monitoring of response to treatment. Here, we report a patient in whom serial cell-free DNA (cfDNA) monitoring for his known prostate adenocarcinoma uncovered the emergence of an unexpected FGFR3-TACC3 gene fusion, a BRCA1 frameshift mutation, and other molecular abnormalities. Due to the rarity of FGFR3 fusions in prostate cancer, a workup for a second primary cancer was performed, leading to the diagnosis of an otherwise-asymptomatic urothelial carcinoma (UC). Once UC-directed treatment was initiated, the presence of these genetic abnormalities in cfDNA allowed for disease monitoring and early detection of resistance, well before radiographic progression. These findings also uncovered opportunities for targeted therapies against FGFR and BRCA1. Overall, this report highlights the multifaceted utility of longitudinal ctDNA monitoring in early cancer diagnosis, disease prognostication, therapeutic target identification, monitoring of treatment response, and early detection of emergence of resistance.
Comments
Associated Data