Publication Date

8-8-2023

Journal

Biology of Sex Differences

DOI

10.1186/s13293-023-00535-6

PMID

37553579

PMCID

PMC10408139

PubMedCentral® Posted Date

8-8-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Animals, Female, Male, Mice, Animals, Newborn, Bronchopulmonary Dysplasia, Hyperoxia, Lung, Lung Injury, MicroRNAs, Sex Factors

Abstract

BACKGROUND: Bronchopulmonary dysplasia (BPD) is characterized by an arrest in lung development and is a leading cause of morbidity in premature neonates. It has been well documented that BPD disproportionally affects males compared to females, but the molecular mechanisms behind this sex-dependent bias remain unclear. Female mice show greater preservation of alveolarization and angiogenesis when exposed to hyperoxia, accompanied by increased miR-30a expression. In this investigation, we tested the hypothesis that loss of miR-30a would result in male and female mice experiencing similar impairments in alveolarization and angiogenesis under hyperoxic conditions.

METHODS: Wild-type and miR-30a−/− neonatal mice were exposed to hyperoxia [95% FiO2, postnatal day [PND1-5] or room air before being euthanized on PND21. Alveolarization, pulmonary microvascular development, differences in lung transcriptome, and miR-30a expression were assessed in lungs from WT and miR-30a−/− mice of either sex. Blood transcriptomic signatures from preterm newborns (with and without BPD) were correlated with WT and miR-30a−/− male and female lung transcriptome data.

RESULTS: Significantly, the sex-specific differences observed in WT mice were abrogated in the miR-30a−/− mice upon exposure to hyperoxia. The loss of miR-30a expression eliminated the protective effect in females, suggesting that miR-30a plays an essential role in regulating alveolarization and angiogenesis. Transcriptome analysis by whole lung RNA-Seq revealed a significant response in the miR-30a−/− female hyperoxia-exposed lung, with enrichment of pathways related to cell cycle and neuroactive ligand–receptor interaction. Gene expression signature in the miR-30a−/− female lung associated with human BPD blood transcriptomes. Finally, we showed the spatial localization of miR-30a transcripts in the bronchiolar epithelium.

CONCLUSIONS: miR-30a could be one of the biological factors mediating the resilience of the female preterm lung to neonatal hyperoxic lung injury. A better understanding of the effects of miR-30a on pulmonary angiogenesis and alveolarization may lead to novel therapeutics for treating BPD.

Comments

Associated Data

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.