Publication Date
1-12-2023
Journal
Human Genetics and Genomics Advances
DOI
10.1016/j.xhgg.2022.100157
PMID
36408368
PMCID
PMC9673101
PubMedCentral® Posted Date
11-1-2022
PubMedCentral® Full Text Version
Post-print
Published Open-Access
no
Keywords
Animals, Humans, Autism Spectrum Disorder, Drosophila melanogaster, Neurodevelopmental Disorders, Language Development Disorders, Cluster Analysis, Chromatin, Intracellular Signaling Peptides and Proteins, Histone-Lysine N-Methyltransferase, Drosophila Proteins, WDR5, COMPASS, neurodevelopmental disorders, intellectual disability, Mendelian disorders, multiple congenital abnormalities, missense variants, next generation sequencing, de novo variants
Abstract
WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophilamelanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.
Included in
Biological Phenomena, Cell Phenomena, and Immunity Commons, Biomedical Informatics Commons, Genetics and Genomics Commons, Medical Genetics Commons, Medical Molecular Biology Commons, Medical Specialties Commons