Publication Date

8-1-2023

Journal

Cancer Research Communications

DOI

10.1158/2767-9764.CRC-22-0501

PMID

37587913

PMCID

PMC10426551

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Humans, Carrier Proteins, Triple Negative Breast Neoplasms, Antineoplastic Agents, Docetaxel, Purines

Abstract

Triple-negative breast cancer (TNBC) constitutes 10%–15% of all breast tumors. The current standard of care is multiagent chemotherapy, which is effective in only a subset of patients. The original objective of this study was to deploy a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) to identify kinases elevated in non-pCR (pathologic complete response) cases for therapeutic targeting. Frozen optimal cutting temperature compound–embedded core needle biopsies were obtained from 43 patients with TNBC before docetaxel- and carboplatin-based neoadjuvant chemotherapy. KIPA was applied to the native tumor lysates that were extracted from samples with high tumor content. Seven percent of all identified proteins were kinases, and none were significantly associated with lack of pCR. However, among a large population of “off-target” purine-binding proteins (PBP) identified, seven were enriched in pCR-associated samples (P < 0.01). In orthogonal mRNA-based TNBC datasets, this seven-gene “PBP signature” was associated with chemotherapy sensitivity and favorable clinical outcomes. Functional annotation demonstrated IFN gamma response, nuclear import of DNA repair proteins, and cell death associations. Comparisons with standard tandem mass tagged–based discovery proteomics performed on the same samples demonstrated that KIPA-nominated pCR biomarkers were unique to the platform. KIPA is a novel biomarker discovery tool with unexpected utility for the identification of PBPs related to cytotoxic drug response. The PBP signature has the potential to contribute to clinical trials designed to either escalate or de-escalate therapy based on pCR probability.

Significance:

The identification of pretreatment predictive biomarkers for pCR in response to neoadjuvant chemotherapy would advance precision treatment for TNBC. To complement standard proteogenomic discovery profiling, a KIPA was deployed and unexpectedly identified a seven-member non-kinase PBP pCR-associated signature. Individual members served diverse pathways including IFN gamma response, nuclear import of DNA repair proteins, and cell death.

Comments

Associated Data

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.