Publication Date
6-1-2022
Journal
Journal of Molecular Medicine
DOI
10.1007/s00109-022-02195-2
PMID
35394143
PMCID
PMC9205172
PubMedCentral® Posted Date
6-1-2023
PubMedCentral® Full Text Version
Author MSS
Published Open-Access
yes
Keywords
Animals, Humans, Infant, Newborn, Infant, Premature, Neovascularization, Pathologic, Retina, Retinopathy of Prematurity, Vascular Endothelial Growth Factor A, Retinopathy of prematurity, oxygen-induced retinopathy, neurovascular interaction, vascular endothelial growth factor, secretogranin III, anti-angiogenic therapy
Abstract
Blood vessels in the developing retina are formed in concert with neural growth, resulting in functional neurovascular network. Disruption of the neurovascular coordination contributes to the pathogenesis of retinopathy of prematurity (ROP), a potentially blinding retinal neovascular disease in preterm infants that currently lacks an approved drug therapy in the USA. Despite vasculopathy as predominant clinical manifestations, an increasing number of studies revealed complex neurovascular interplays among neurons, glial cells and blood vessels during ROP. Coordinated expression of glia-derived vascular endothelial growth factor (VEGF) in spatio-temporal gradients is pivotal to the formation of well-organized vascular plexuses in the healthy retina, whereas uncoordinated VEGF expression triggers pathological angiogenesis with disorganized vascular tufts in ROP. In contrast with VEGF driving both pathological and physiological angiogenesis, neuron-derived angiogenic factor secretogranin III (Scg3) stringently regulates ROP but not healthy retinal vessels in animal models. Anti-VEGF and anti-Scg3 therapies confer similar high efficacies to alleviate ROP in preclinical studies but are distinct in their disease selectivity and safety. This review discusses neurovascular communication among retinal blood vessels, neurons and glial cells during retinal development and ROP pathogenesis and summarizes the current and emerging therapies to address unmet clinical needs for the disease.