Language

English

Publication Date

3-1-2024

Journal

NAR Genomics and Bioinformatics

DOI

10.1093/nargab/lqae007

PMID

38312937

PMCID

PMC10836941

PubMedCentral® Posted Date

2-2-2024

PubMedCentral® Full Text Version

Post-print

Abstract

Recent advances in single-cell multi-omics technologies have provided unprecedented insights into regulatory processes. We introduce TREASMO, a versatile Python package designed to quantify and visualize transcriptional regulatory dynamics in single-cell multi-omics datasets. TREASMO has four modules, spanning data preparation, correlation quantification, downstream analysis and visualization, enabling comprehensive dataset exploration. By introducing a novel single-cell gene-peak correlation strength index, TREASMO facilitates accurate identification of regulatory changes at single-cell resolution. Validation on a hematopoietic stem and progenitor cell dataset showcases TREASMO's capacity in quantifying the gene-peak correlation strength at the single-cell level, identifying regulatory markers and discovering temporal regulatory patterns along the trajectory.

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.