Publication Date

1-26-2023

Journal

Viruses

DOI

10.3390/vaccines11020267

PMID

36851145

PMCID

PMC9963959

PubMedCentral® Posted Date

1-26-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

system biology, vaccine targets, pathways, gene ontology, chagas disease, Trypanosoma cruzi, drug target

Abstract

Chagas disease (CD) is endemic in large parts of Central and South America, as well as in Texas and the southern regions of the United States. Successful parasites, such as the causative agent of CD, Trypanosoma cruzi have adapted to specific hosts during their phylogenesis. In this work, we have assembled an interactive network of the complex relations that occur between molecules within T. cruzi. An expert curation strategy was combined with a text-mining approach to screen 10,234 full-length research articles and over 200,000 abstracts relevant to T. cruzi. We obtained a scale-free network consisting of 1055 nodes and 874 edges, and composed of 838 proteins, 43 genes, 20 complexes, 9 RNAs, 36 simple molecules, 81 phenotypes, and 37 known pharmaceuticals. Further, we deployed an automated docking pipeline to conduct large-scale docking studies involving several thousand drugs and potential targets to identify network-based binding propensities. These experiments have revealed that the existing FDA-approved drugs benznidazole (Bz) and nifurtimox (Nf) show comparatively high binding energies to the T. cruzi network proteins (e.g., PIF1 helicase-like protein, trans-sialidase), when compared with control datasets consisting of proteins from other pathogens. We envisage this work to be of value to those interested in finding new vaccines for CD, as well as drugs against the T. cruzi parasite.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 2
  • Usage
    • Abstract Views: 1
  • Captures
    • Readers: 10
  • Mentions
    • Blog Mentions: 1
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.