Language

English

Publication Date

1-1-2025

Journal

Journal of Cardiology

DOI

10.5603/cj.103883

PMID

40062924

PMCID

PMC12068238

PubMedCentral® Posted Date

4-30-2025

PubMedCentral® Full Text Version

Post-print

Abstract

Background: Cardiac arrest in children is associated with high morbidity and mortality, primarily due to neurological injury. Biomarkers linked to brain injury, released into circulation from compromised elements of the neurovascular unit, act as significant prognostic indicators in patients suffering from hypoxic-ischemic brain injury (HIBI) subsequent to the restoration of spontaneous circulation (ROSC) after pediatric cardiac arrest. The aim of this systematic review and meta-analysis is to evaluate the prognostic utility of brain injury biomarkers in predicting neurological outcomes and survival in patients following cardiac arrest in the pediatric population.

Methods: Bibliographic databases (PubMed, the Cochrane Library, and Embase) were searched from their inception to November 2024. A random-effect model was used for all analyses.

Results: Our meta-analysis demonstrates significant associations between various biomarkers and survival or neurological outcomes after cardiac arrest. Neuron-specific enolase (NSE) levels were consistently elevated in non-survivors and patients with unfavorable neurological outcomes, with pronounced differences observed on Days 2 and 3 (e.g., Day 3 mean difference: -88.48, 95%CI: -146.77 to -30.19, P = 0.003). Emerging biomarkers, including UCH-L1 and GFAP, showed striking differences, such as elevated UCH-L1 levels on Day 1 (mean difference: -415.41, 95%CI: -474.41 to -356.61, P < 0.001) and GFAP levels exceeding 4000 ng/mL in non-survivors on Day 2 (P < 0.001).

Conclusions: Our findings underscore the significant prognostic value of biomarkers in predicting survival and neurological outcomes following cardiac arrest. Neuron-specific enolase (NSE) consistently demonstrated its reliability across multiple time points, while emerging biomarkers like UCH-L1 and GFAP showed promising potential for early outcome stratification.

Keywords

Humans, Biomarkers, Heart Arrest, Phosphopyruvate Hydratase, Prognosis, Child, Ubiquitin Thiolesterase, Glial Fibrillary Acidic Protein, Predictive Value of Tests, Survival Rate, Hypoxia-Ischemia, Brain, Brain, Cardiopulmonary Resuscitation, brain markers, neuron-specific enolase, S100β protein, survival, cardiac arrest, meta-analysis

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.