Language

English

Publication Date

2-1-2023

Journal

Circulation: Arrhythmia and Electrophysiology

DOI

10.1161/CIRCEP.122.010858

PMID

36706317

PMCID

PMC9974897

PubMedCentral® Posted Date

2-1-2024

PubMedCentral® Full Text Version

Author MSS

Abstract

Background: Spontaneously depolarizing nodal cells comprise the pacemaker of the heart. Intracellular calcium (Ca2+) plays a critical role in mediating nodal cell automaticity and understanding this so-called Ca2+ clock is critical to understanding nodal arrhythmias. We previously demonstrated a role for Jph2 (junctophilin 2) in regulating Ca2+-signaling through inhibition of RyR2 (ryanodine receptor 2) Ca2+ leak in cardiac myocytes; however, its role in pacemaker function and nodal arrhythmias remains unknown. We sought to determine whether nodal Jph2 expression silencing causes increased sinoatrial and atrioventricular nodal cell automaticity due to aberrant RyR2 Ca2+ leak.

Methods: A tamoxifen-inducible, nodal tissue-specific, knockdown mouse of Jph2 was achieved using a Cre-recombinase-triggered short RNA hairpin directed against Jph2 (Hcn4:shJph2). In vivo cardiac rhythm was monitored by surface ECG, implantable cardiac telemetry, and intracardiac electrophysiology studies. Intracellular Ca2+ imaging was performed using confocal-based line scans of isolated nodal cells loaded with fluorescent Ca2+ reporter Cal-520. Whole cell patch clamp was conducted on isolated nodal cells to determine action potential kinetics and sodium-calcium exchanger function.

Results: Hcn4:shJph2 mice demonstrated a 40% reduction in nodal Jph2 expression, resting sinus tachycardia, and impaired heart rate response to pharmacologic stress. In vivo intracardiac electrophysiology studies and ex vivo optical mapping demonstrated accelerated junctional rhythm originating from the atrioventricular node. Hcn4:shJph2 nodal cells demonstrated increased and irregular Ca2+ transient generation with increased Ca2+ spark frequency and Ca2+ leak from the sarcoplasmic reticulum. This was associated with increased nodal cell AP firing rate, faster diastolic repolarization rate, and reduced sodium-calcium exchanger activity during repolarized states compared to control. Phenome-wide association studies of the JPH2 locus identified an association with sinoatrial nodal disease and atrioventricular nodal block.

Conclusions: Nodal-specific Jph2 knockdown causes increased nodal automaticity through increased Ca2+ leak from intracellular stores. Dysregulated intracellular Ca2+ underlies nodal arrhythmogenesis in this mouse model.

Keywords

Animals, Mice, Calcium, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Myocytes, Cardiac, Ryanodine Receptor Calcium Release Channel, Sarcoplasmic Reticulum, Sinoatrial Node, Sodium-Calcium Exchanger, Automaticity, calcium, junctophilin 2, Jph2, sinoatrial node, pacemaker

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.