Language

English

Publication Date

10-16-2025

Journal

Nature Communications

DOI

10.1038/s41467-025-64236-x

PMID

41102182

PMCID

PMC12532822

PubMedCentral® Posted Date

10-16-2025

PubMedCentral® Full Text Version

Post-print

Abstract

Clonal hematopoiesis (CH) is defined by the expansion of a lineage of genetically identical cells in blood. Genetic lesions that confer a fitness advantage, such as leukemogenic point mutations or mosaic chromosomal alterations (mCAs), are frequent mediators of CH. However, recent analyses of both single cell-derived colonies of hematopoietic cells and population sequencing cohorts have revealed CH frequently occurs in the absence of known driver genetic lesions. To characterize CH without known driver genetic lesions, we use 51,399 deeply sequenced whole genomes from the NHLBI TOPMed sequencing initiative to perform simultaneous germline and somatic mutation analyses among individuals without leukemogenic point mutations (LPM), which we term CH-LPMneg. We quantify CH by estimating the total mutation burden. Because estimating somatic mutation burden without a paired-tissue sample is challenging, we develop a novel statistical method, the Genomic and Epigenomic informed Mutation (GEM) rate, that uses external genomic and epigenomic data sources to distinguish artifactual signals from true somatic mutations. We perform a genome-wide association study of GEM to discover the germline determinants of CH-LPMneg. We identify seven genes associated with CH-LPMneg (TCL1A, TERT, SMC4, NRIP1, PRDM16, MSRA, SCARB1).Functional analyses of SMC4 and NRIP1 implicated altered hematopoietic stem cell self-renewal and proliferation as the primary mediator of mutation burden in blood. We then perform comprehensive multi-tissue transcriptomic analyses, finding that the expression levels of 404 genes are associated with GEM. Finally, we perform phenotypic association meta-analyses across four cohorts, finding that GEM is associated with increased white blood cell count, but is not significantly associated with incident stroke or coronary disease events. Overall, we develop GEM for quantifying mutation burden from WGS and use GEM to discover the genetic, genomic, and phenotypic correlates of CH-LPMneg.

Keywords

Humans, Point Mutation, Genome-Wide Association Study, Clonal Hematopoiesis, Genomics, Germ-Line Mutation, Genetics, Cancer epidemiology, Computational biology and bioinformatics

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.