Language

English

Publication Date

9-1-2024

Journal

Journal of Biomedical Informatics

DOI

10.1016/j.jbi.2024.104689

PMID

39029770

Abstract

The classification of sleep stages is crucial for gaining insights into an individual's sleep patterns and identifying potential health issues. Employing several important physiological channels in different views, each providing a distinct perspective on sleep patterns, can have a great impact on the efficiency of the classification models. In the context of neural networks and deep learning models, transformers are very effective, especially when dealing with time series data, and have shown remarkable compatibility with sequential data analysis as physiological channels. On the other hand, cross-modality attention by integrating information from multiple views of the data enables to capture relationships among different modalities, allowing models to selectively focus on relevant information from each modality. In this paper, we introduce a novel deep-learning model based on transformer encoder-decoder and cross-modal attention for sleep stage classification. The proposed model processes information from various physiological channels with different modalities using the Sleep Heart Health Study Dataset (SHHS) data and leverages transformer encoders for feature extraction and cross-modal attention for effective integration to feed into the transformer decoder. The combination of these elements increased the accuracy of the model up to 91.33% in classifying five classes of sleep stages. Empirical evaluations demonstrated the model's superior performance compared to standalone approaches and other state-of-the-art techniques, showcasing the potential of combining transformer and cross-modal attention for improved sleep stage classification.

Keywords

Deep Learning, Humans, Sleep Stages, Neural Networks, Computer, Polysomnography, Electroencephalography, Algorithms, Signal Processing, Computer-Assisted, Male

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.