Language

English

Publication Date

1-11-2025

Journal

npj Regenerative Medicine

DOI

10.1038/s41536-025-00389-z

PMID

39799185

PMCID

PMC11724930

PubMedCentral® Posted Date

1-11-2025

PubMedCentral® Full Text Version

Post-print

Abstract

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies. A drug screen targeting proteins involved in CM calcium cycling in human embryonic stem cell-derived cardiac organoids (hCOs) revealed that only the inhibition of L-Type Calcium Channel (LTCC) induced the CM cell cycle. Furthermore, overexpression of Ras-related associated with Diabetes (RRAD), an endogenous inhibitor of LTCC, induced CM cell cycle activity in vitro, in human cardiac slices, and in vivo. Mechanistically, LTCC inhibition by RRAD or nifedipine induced CM cell cycle by modulating calcineurin activity. Moreover, ectopic expression of RRAD/CDK4/CCND in combination induced CM proliferation in vitro and in vivo, improved cardiac function and reduced scar size post-myocardial infarction.

Keywords

Cell-cycle exit, Calcium signalling

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.