Language

English

Publication Date

6-1-2023

Journal

Genetics in Medicine

DOI

10.1016/j.gim.2023.100830

PMID

36939041

Abstract

Purpose: The analysis of exome and genome sequencing data for the diagnosis of rare diseases is challenging and time-consuming. In this study, we evaluated an artificial intelligence model, based on machine learning for automating variant prioritization for diagnosing rare genetic diseases in the Baylor Genetics clinical laboratory.

Methods: The automated analysis model was developed using a supervised learning approach based on thousands of manually curated variants. The model was evaluated on 2 cohorts. The model accuracy was determined using a retrospective cohort comprising 180 randomly selected exome cases (57 singletons, 123 trios); all of which were previously diagnosed and solved through manual interpretation. Diagnostic yield with the modified workflow was estimated using a prospective "production" cohort of 334 consecutive clinical cases.

Results: The model accurately pinpointed all manually reported variants as candidates. The reported variants were ranked in top 10 candidate variants in 98.4% (121/123) of trio cases, in 93.0% (53/57) of single proband cases, and 96.7% (174/180) of all cases. The accuracy of the model was reduced in some cases because of incomplete variant calling (eg, copy number variants) or incomplete phenotypic description.

Conclusion: The automated model for case analysis assists clinical genetic laboratories in prioritizing candidate variants effectively. The use of such technology may facilitate the interpretation of genomic data for a large number of patients in the era of precision medicine.

Keywords

Humans, Rare Diseases, Laboratories, Clinical, Laboratories, Artificial Intelligence, Retrospective Studies, Prospective Studies, Exome, Clinical genomics. Machine learning methods

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.