Language

English

Publication Date

7-15-2025

Journal

Neuroimage

DOI

10.1016/j.neuroimage.2025.121288

PMID

40409386

Abstract

Recent evidence indicates that the intraparietal sulcus (IPS) may play a causal role in action stopping, potentially representing a novel neuromodulation target for inhibitory control dysfunctions. Here, we leverage intracranial recordings in human subjects to establish the timing and directionality of information flow between IPS and prefrontal and cingulate regions during action stopping. Prior to successful inhibition, information flows primarily from the inferior frontal gyrus (IFG), a critical inhibitory control node, to IPS. In contrast, during stopping errors the communication between IPS and IFG is lacking, and IPS is engaged by posterior cingulate cortex, an area outside of the classical inhibition network and typically associated with default mode. Anterior cingulate and orbitofrontal cortex also display performance-dependent connectivity with IPS. Our functional connectivity results provide direct electrophysiological evidence that IPS is recruited by frontal and anterior cingulate areas to support action plan monitoring and updating, and by posterior cingulate during control failures.

Keywords

Humans, Gyrus Cinguli, Parietal Lobe, Male, Female, Adult, Young Adult, Inhibition, Psychological, Prefrontal Cortex, Psychomotor Performance, Executive Function, Frontal Lobe, Functional connectivity. Inhibitory control. Intracranial recording. Parietal cortex

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.