Authors

Nick Steele
Ashley A Huggins
Rajendra A Morey
Ahmed Hussain
Courtney Russell
Benjamin Suarez-Jimenez
Elena Pozzi
Hadis Jameei
Lianne Schmaal
Ilya M Veer
Lea Waller
Neda Jahanshad
Sophia I Thomopoulos
Lauren E Salminen
Miranda Olff
Jessie L Frijling
Dick J Veltman
Saskia B J Koch
Laura Nawijn
Mirjam van Zuiden
Li Wang
Ye Zhu
Gen Li
Dan J Stein
Jonathan Ipser
Yuval Neria
Xi Zhu
Orren Ravid
Sigal Zilcha-Mano
Amit Lazarov
Jennifer S Stevens
Kerry Ressler
Tanja Jovanovic
Sanne J H van Rooij
Negar Fani
Sven C Mueller
Anna R Hudson
Judith K Daniels
Anika Sierk
Antje Manthey
Henrik Walter
Nic J A van der Wee
Steven J A van der Werff
Robert R J M Vermeiren
Christian Schmahl
Julia I Herzog
Ivan Rektor
Pavel Říha
Milissa L Kaufman
Lauren A M Lebois
Justin T Baker
Isabelle M Rosso
Elizabeth A Olson
Anthony King
Israel Liberzon
Michael Angstadt
Nicholas D Davenport
Seth G Disner
Scott R Sponheim
Thomas Straube
David Hofmann
Guangming Lu
Rongfeng Qi
Xin Wang
Austin Kunch
Hong Xie
Yann Quidé
Wissam El-Hage
Shmuel Lissek
Hannah Berg
Steven E Bruce
Josh Cisler
Marisa Ross
Ryan J Herringa
Daniel W Grupe
Jack B Nitschke
Richard J Davidson
Christine Larson
Terri A deRoon-Cassini
Carissa W Tomas
Jacklynn M Fitzgerald
Jeremy Elman
Matthew Panizzon
Carol E Franz
Michael J Lyons
William S Kremen
Brandee Feola
Jennifer U Blackford
Bunmi O Olatunji
Geoffrey May
Steven M Nelson
Evan M Gordon
Chadi G Abdallah
Ruth Lanius
Maria Densmore
Jean Théberge
Richard W J Neufeld
Paul M Thompson
Delin Sun

Language

English

Publication Date

11-15-2025

Journal

Neuroimage

DOI

10.1016/j.neuroimage.2025.121554

PMID

41138791

Abstract

The increasing scale and complexity of neuroimaging datasets aggregated from multiple study sites present substantial analytic challenges, as existing statistical analysis tools struggle to handle missing voxel-data, suffer from limited computational speed and inefficient memory allocation, and are restricted in the types of statistical designs they are able to model. We introduce Image-Based Meta- & Mega-Analysis (IBMMA), a novel software package implemented in R and Python that provides a unified framework for analyzing diverse neuroimaging features, efficiently handles large-scale datasets through parallel processing, offers flexible statistical modeling options, and properly manages missing voxel-data commonly encountered in multi-site studies. IBMMA successfully analyzed a large-n dataset of several thousand participants and revealed findings in brain regions that some traditional software overlooked due to missing voxel-data resulting in gaps in brain coverage. IBMMA has the potential to accelerate discoveries in neuroscience and enhance the clinical utility of neuroimaging findings.

Keywords

Humans, Neuroimaging, Brain, Software, Image Processing, Computer-Assisted, Meta-Analysis as Topic, Big data. Mega-analysis. Meta-analysis. Neuroimaging. PTSD. Resting-state fMRI

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.