Language

English

Publication Date

9-12-2024

Journal

ACS Medicinal Chemistry Letters Journal

DOI

10.1021/acsmedchemlett.4c00257

PMID

39291021

PMCID

PMC11403753

PubMedCentral® Posted Date

8-5-2024

PubMedCentral® Full Text Version

Post-print

Abstract

Semen liquefaction is a postejaculation process that transforms semen from a gel-like (coagulated) form to a water-like consistency (liquefied). This process is primarily regulated by serine proteases from the prostate gland, most prominently, prostate-specific antigen (PSA; KLK3). Inhibiting PSA activity has the potential to impede liquefaction of human semen, presenting a promising target for nonhormonal contraception in the female reproductive tract. This study employed triazole B1 as a starting compound. Through systematic design, synthesis, and optimization, we identified compound 20 (CDD-3290) as a 216 nM inhibitor of PSA with better stability in media than triazole B1. Further, we also evaluated the selectivity profile of compound 20 (CDD-3290) by testing against closely related proteases and demonstrated excellent inhibition of PSA versus α-chymotrypsin and elastase and similar potency versus thrombin. Thus, compound 20 is an improved PSA inhibitor that can be tested for efficacy in vitro or in the female reproductive tract.

Keywords

kallikrein-related peptidase 3, KLK3, prostate-specific antigen, PSA, structure−activity relationship, small molecule inhibitors

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.