Language

English

Publication Date

11-21-2025

Journal

Translational Psychiatry

DOI

10.1038/s41398-025-03721-9

PMID

41271629

PMCID

PMC12711988

PubMedCentral® Posted Date

11-21-2025

PubMedCentral® Full Text Version

Post-print

Abstract

Genes influencing opioid use disorder (OUD) biology have been identified via genome-wide association studies (GWAS), gene expression, and network analyses. These discoveries provide opportunities to identifying existing compounds targeting these genes for drug repurposing studies. However, systematically integrating discovery results and identifying relevant available pharmacotherapies for OUD repurposing studies is challenging. To address this, we've constructed a framework that uses existing results and drug databases to identify candidate pharmacotherapies. For this study, two independent OUD related meta-analyses were used including a GWAS and a differential gene expression (DGE) study of post-mortem human brain. Protein-Protein Interaction (PPI) sub-networks enriched for GWAS risk loci were identified via network analyses. Drug databases Pharos, Open Targets, Therapeutic Target Database (TTD), and DrugBank were queried for clinical status and target selectivity. Cross-omic and drug query results were then integrated to identify candidate compounds. GWAS and DGE analyses revealed 3 and 335 target genes (FDR q <  0.05), respectively, while network analysis detected 70 genes in 22 enriched PPI networks. Four selection strategies were implemented, which yielded between 72 and 676 genes with statistically significant support and 110 to 683 drugs targeting these genes, respectively. After filtering out less specific compounds or those targeting well-established psychiatric-related receptors (OPRM1 and DRD2), between 2 and 329 approved drugs remained across the four strategies. By leveraging multiple lines of biological evidence and resources, we identified many FDA approved drugs that target genes associated with OUD. This approach a) allows high-throughput querying of OUD-related genes, b) detects OUD-related genes and compounds not identified using a single domain or resource, and c) produces a succinct summary of FDA approved compounds eligible for efficient expert review. Identifying larger pools of candidate pharmacotherapies and summarizing the supporting evidence bridges the gap between discovery and drug repurposing studies.

Keywords

Humans, Drug Repositioning, Genome-Wide Association Study, Opioid-Related Disorders, Protein Interaction Maps, Databases, Pharmaceutical, Multiomics, Addiction, Drug discovery, Genetics

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.