Language

English

Publication Date

1-14-2024

Journal

Journal of Personalized Medicine

DOI

10.3390/jpm14010094

PMID

38248795

PMCID

PMC10817272

PubMedCentral® Posted Date

1-14-2024

PubMedCentral® Full Text Version

Post-print

Abstract

Prediction of high-risk events amongst patients with mental disorders is critical for personalized interventions. We developed DeepBiomarker2 by leveraging deep learning and natural language processing to analyze lab tests, medication use, diagnosis, social determinants of health (SDoH) parameters, and psychotherapy for outcome prediction. To increase the model's interpretability, we further refined our contribution analysis to identify key features by scaling with a factor from a reference feature. We applied DeepBiomarker2 to analyze the EMR data of 38,807 patients from the University of Pittsburgh Medical Center diagnosed with post-traumatic stress disorder (PTSD) to determine their risk of developing alcohol and substance use disorder (ASUD). DeepBiomarker2 predicted whether a PTSD patient would have a diagnosis of ASUD within the following 3 months with an average c-statistic (receiver operating characteristic AUC) of 0.93 and average F1 score, precision, and recall of 0.880, 0.895, and 0.866 in the test sets, respectively. Our study found that the medications clindamycin, enalapril, penicillin, valacyclovir, Xarelto/rivaroxaban, moxifloxacin, and atropine and the SDoH parameters access to psychotherapy, living in zip codes with a high normalized vegetative index, Gini index, and low-income segregation may have potential to reduce the risk of ASUDs in PTSD. In conclusion, the integration of SDoH information, coupled with the refined feature contribution analysis, empowers DeepBiomarker2 to accurately predict ASUD risk. Moreover, the model can further identify potential indicators of increased risk along with medications with beneficial effects.

Keywords

post-traumatic stress disorder, alcohol, and substance use disorder, social determinants of health, psychotherapy, natural language processing, deep learning, biomarker identification

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.