Publication Date

5-1-2023

Journal

Clinical Transplantation

DOI

10.1111/ctr.14951

PMID

36856124

PMCID

PMC11323256

PubMedCentral® Posted Date

8-14-2024

PubMedCentral® Full Text Version

Author MSS

Abstract

Background: Increasing access and better allocation of organs in the field of transplantation is a critical problem in clinical care. Limitations exist in accurately predicting allograft discard. Potential exists for machine learning to provide a balanced assessment of the potential for an organ to be used in a transplantation procedure.

Methods: We accessed and utilized all available deceased donor United Network for Organ Sharing data from 1987 to 2020. With these data, we evaluated the performance of multiple machine learning methods for predicting organ use. The machine learning methods trialed included XGBoost, random forest, Naïve Bayes (NB), logistic regression, and fully connected feedforward neural network classifier methods. The top two methods, XGBoost and random forest, were fully developed using 10-fold cross-validation and Bayesian optimization of hyperparameters.

Results: The top performing model at predicting liver organ use was an XGBoost model which achieved an AUC-ROC of .925, an AUC-PR of .868, and an F1 statistic of .756. The top performing model for predicting kidney organ use classification was an XGBoost model which achieved an AUC-ROC of .952, and AUC-PR of .883, and an F1 statistic of .786.

Conclusions: The XGBoost method demonstrated a significant improvement in predicting donor allograft discard for both kidney and livers in solid organ transplantation procedures. Machine learning methods are well suited to be incorporated into the clinical workflow; they can provide robust quantitative predictions and meaningful data insights for clinician consideration and transplantation decision-making.

Keywords

Humans, Bayes Theorem, Machine Learning, Tissue Donors, Logistic Models, discard, machine learning, outcomes, prediction, random forest, transplantation, XGBoost

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.