Publication Date
6-10-2024
Journal
JCI Insight
DOI
10.1172/jci.insight.171005
PMID
38855866
PMCID
PMC11382877
PubMedCentral® Posted Date
6-10-2024
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Keywords
Humans, Induced Pluripotent Stem Cells, Myocytes, Cardiac, Folic Acid, Arrhythmias, Cardiac, Male, Female, Child
Abstract
TANGO2-deficiency disorder (TDD) is an autosomal-recessive genetic disease caused by biallelic loss-of-function variants in the TANGO2 gene. TDD-associated cardiac arrhythmias are recalcitrant to standard antiarrhythmic medications and constitute the leading cause of death. Disease modeling for TDD has been primarily carried out using human dermal fibroblast and, more recently, in Drosophila by multiple research groups. No human cardiomyocyte system has been reported, which greatly hinders the investigation and understanding of TDD-associated arrhythmias. Here, we established potentially novel patient-derived induced pluripotent stem cell differentiated cardiomyocyte (iPSC-CM) models that recapitulate key electrophysiological abnormalities in TDD. These electrophysiological abnormalities were rescued in iPSC-CMs with either adenoviral expression of WT-TANGO2 or correction of the pathogenic variant using CRISPR editing. Our natural history study in patients with TDD suggests that the intake of multivitamin/B complex greatly diminished the risk of cardiac crises in patients with TDD. In agreement with the clinical findings, we demonstrated that high-dose folate (vitamin B9) virtually abolishes arrhythmias in TDD iPSC-CMs and that folate's effect was blocked by the dihydrofolate reductase inhibitor methotrexate, supporting the need for intracellular folate to mediate antiarrhythmic effects. In summary, data from TDD iPSC-CM models together with clinical observations support the use of B vitamins to mitigate cardiac crises in patients with TDD, providing potentially life-saving treatment strategies during life-threatening events.
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Biology Commons, Integrative Medicine Commons, Medical Sciences Commons
Comments
Associated Data