Publication Date

1-1-2021

Journal

PLoS One

DOI

10.1371/journal.pone.0254557

PMID

34473704

PMCID

PMC8412337

PubMedCentral® Posted Date

9-2-2021

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Animals, Apoptosis, Cell Proliferation, Cells, Cultured, Collagen Type VI, Fibrosis, Hepatic Stellate Cells, Humans, Liver Cirrhosis, Peptides, Protein Subunits, Rats, Signal Transduction, Transforming Growth Factor beta1

Abstract

The interaction of extracellular matrix (ECM) components with hepatic stellate cells (HSCs) is thought to perpetuate fibrosis by stimulating signaling pathways that drive HSC activation, survival and proliferation. Consequently, disrupting the interaction between ECM and HSCs is considered a therapeutical avenue although respective targets and underlying mechanisms remain to be established. Here we have interrogated the interaction between type VI collagen (CVI) and HSCs based on the observation that CVI is 10-fold upregulated during fibrosis, closely associates with HSCs in vivo and promotes cell proliferation and cell survival in cancer cell lines. We exposed primary rat HSCs and a rat hepatic stellate cell line (CFSC) to soluble CVI and determined the rate of proliferation, apoptosis and fibrogenesis in the absence of any additional growth factors. We find that CVI in nanomolar concentrations prevents serum starvation-induced apoptosis. This potent anti-apoptotic effect is accompanied by induction of proliferation and acquisition of a pronounced pro-fibrogenic phenotype characterized by increased α-smooth muscle actin, TGF-β, collagen type I and TIMP-1 expression and diminished proteolytic MMP-13 expression. The CVI-HSC interaction can be disrupted with the monomeric α2(VI) and α3(VI) chains and abrogates the activating CVI effects. Further, functional relevant α3(VI)-derived 30 amino acid peptides lead to near-complete inhibition of the CVI effect. In conclusion, CVI serves as a potent mitogen and activating factor for HSCs. The antagonistic effects of the CVI monomeric chains and peptides point to linear peptide sequences that prevent activation of CVI receptors which may allow a targeted antifibrotic therapy.

Comments

Associated Data

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.