The genetic basis of thoracic aortic aneurysms and dissections: Genetic heterogeneity and mapping of TAAD1 and TAAD2 loci

Sumera Nikhat Hasham, The University of Texas Graduate School of Biomedical Sciences at Houston

Abstract

Thoracic aortic aneurysms leading to aortic dissections (TAAD) are a major cause of morbidity and mortality in the United States. TAAD is a complication of some known genetic disorders, such as Marfan syndrome and Turner syndrome, but the majority of familial cases are not due to a known genetic syndrome. Previous studies by our group have established that nonsyndromic, familial TAAD is inherited in an autosomal dominant manner with decreased penetrance and variable expression. Using one large family with multiple members with TAAD for the genome wide scan, a major locus for familial TAAD was mapped to 5q13–14 (TAAD1). Nine out of 15 families studied were linked to this locus, establishing that TAAD1 was a major locus, and that there was genetic heterogeneity for the condition. Mapping of TAAD2 locus was accomplished using a single large family with multiple members with TAAD not linked to known loci of aneurysm formation. This established a second novel locus for familial TAAD on 3p24–25 (LOD score of 4.3), termed the TAAD2 locus. Two putative loci with suggestive LOD scores were mapped on 4q and 12q through a genome scan carried out using three families. TAAD phenotype in 12 families did not segregate with known loci, indicating further genetic heterogeneity. An STS-tagged BAC based contig was constructed for 7.8Mb and 25Mb critical interval of TAAD1 and TAAD2 respectively and characterized to identify the defective gene. The hypothesis that the defective genes responsible for the TAAD1 and TAAD2 encoded extracellular matrix (ECM) proteins, the major components of the elastic fiber system in the aortic media was tested. Four genes encoding ECM proteins, versican, thrombospondin-3, CRTL1, on TAAD1 and FBLN2 at TAAD2 were sequenced, but no disease-causing mutations were identified. Studies to identify the defective gene are initiated through the positional candidate gene approach using combination of bioinformatics and expression studies. The identification of the TAAD susceptibility genes will allow for presymptomatic diagnosis of individuals at risk for this life threatening disease. The identification of the molecular defects that contribute to TAAD will also further our understanding of the proteins that provide structural integrity to the aortic wall.

Subject Area

Genetics|Molecular biology

Recommended Citation

Hasham, Sumera Nikhat, "The genetic basis of thoracic aortic aneurysms and dissections: Genetic heterogeneity and mapping of TAAD1 and TAAD2 loci" (2003). Texas Medical Center Dissertations (via ProQuest). AAI3081464.
https://digitalcommons.library.tmc.edu/dissertations/AAI3081464

Share

COinS