SFRP4 regulation of Wnt7a signaling and cellular proliferation in the endometrium

Kendra S Carmon, The University of Texas Graduate School of Biomedical Sciences at Houston

Abstract

In the endometrium, hormonal effects on epithelial cells are often elicited through stromal hormone receptors via unknown paracrine mechanisms. Several lines of evidence support the hypothesis that Wnts participate in stromal-epithelial cell communication and thus mediate hormone action. Characterization of specific Wnt signaling components in the endometrium was performed using cellular localization studies and evaluating hormone effects in a rat model. Wnt7a was expressed in the luminal epithelium, whereas the extracellular Wnt modulator, SFRP4, was localized to the endometrial stroma. SFRP4 expression is significantly decreased in endometrial carcinoma and aberrant Wnt7a signaling has been shown to cause uterine defects and contribute to the onset of disease. The specific Fzds and SFRPs that bind Wnt7a and the particular signal transduction pathway each Wnt7a-Fzd pair activates have not been identified. Additionally, the function of Wnt7a and SFRP4 in the endometrium has not been addressed. A survey of all Wnt signaling proteins expressed in the endometrium was conducted and Fzd5 and Fzd10 were identified as two receptors capable of transducing the Wnt7a signal. Biologically active recombinant Wnt7a and SFRP4 proteins were purified for quantitative biochemical studies. In Ishikawa cells, Wnt7a binding to Fzd5 activated β-catenin/canonical Wnt signaling and increased cellular proliferation. Wnt7a signaling mediated by Fzd10 induced a non-canonical/JNK-responsive pathway. SFRP4 suppressed Wnt7a action in both an autocrine and paracrine manner. Treatment with SFRP4 protein and overexpression of SFRP4 inhibited endometrial cancer cell growth and induced apoptosis in vitro. A split-eGFP complementation assay was developed to visually detect Wnt7a-Fzd interactions and subsequent pathway activation in cells. By employing a unique ELISA-based protein-protein binding technique, it was demonstrated that Wnt7a binds to SFRP4 and Fzd5 with equal nanomolar affinity. The development of these novel biological tools could lead to a better understanding of Wnt-protein interactions and the identification of new modulators of Wnt signaling. This study supports a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent upon the Fzd repertoire of the cell and can be regulated by SFRP4. The potential tumor suppressor function of SFRP4 suggests it may serve as a therapeutic target for endometrial carcinoma.

Subject Area

Molecular biology|Cellular biology

Recommended Citation

Carmon, Kendra S, "SFRP4 regulation of Wnt7a signaling and cellular proliferation in the endometrium" (2008). Texas Medical Center Dissertations (via ProQuest). AAI3302757.
https://digitalcommons.library.tmc.edu/dissertations/AAI3302757

Share

COinS