The role of SRC family kinase activation in prostate cancer growth and lymph node metastasis
Abstract
Aberrant expression and/or activation of Src Family of non-receptor protein tyrosine kinases (SFKs) occur frequently during progressive stages of multiple types of human malignancies, including prostate cancer. Two SFKs, Src and Lyn, are expressed and implicated in prostate cancer progression. Work in this dissertation investigated the specific roles of Src and Lyn in the prostate tumor progression, and the effects of SFK inhibition on prostate tumor growth and lymph node metastasis in pre-clinical mouse models. Firstly, using a pharmacological inhibitor of SFKs in clinical trials, dasatinib, I demonstrated that SFK inhibition affects both cellular migration and proliferation in vitro. Systemic administration of dasatinib reduced primary tumor growth, as well as development of lymph node metastases, in both androgen-sensitive and -resistant orthotopic prostate cancer mouse models. Immunohistochemical analysis of the primary tumors revealed that dasatinib treatment decreased SFK phosphorylation but not expression, resulting in decreased cellular proliferation and increased apoptosis. For this analysis of immunohistochemical stained tissues, I developed a novel method of quantifying immunohistochemical stain intensity that greatly reduced the inherent bias in analyzing staining intensity. To determine if Src and Lyn played overlapping or distinct roles in prostate cancer tumor growth and progression, Src expression alone was inhibited by small-interfering RNA. The resulting stable cell lines were decreased in migration, but not substantially affected in proliferation rates. In contrast, an analogous strategy targeting Lyn led to stable cell lines in which proliferation rates were significantly reduced. Lastly, I tested the efficacy of a novel SFK inhibitor (KX2-391) targeting peptide substrate-binding domain, on prostate cancer growth and lymph node metastasis in vivo. I demonstrated that KX2-391 has similar effects as dasatinib, an ATP-competitive small molecular inhibitor, on both the primary tumor growth and development of lymph node metastasis in vivo, work that contributed to the first-in-man Phase I clinical trial of KX2-391. In summary, studies in this dissertation provide the first demonstration that Src and Lyn activities affect different cellular functions required for prostate tumor growth and metastasis, and SFK inhibitors effectively reduce primary tumor growth and lymph node metastasis. Therefore, I conclude that SFKs are promising therapeutic targets for treatment of human prostate cancer.
Subject Area
Cellular biology|Medicine
Recommended Citation
Park, Serk In, "The role of SRC family kinase activation in prostate cancer growth and lymph node metastasis" (2008). Texas Medical Center Dissertations (via ProQuest). AAI3328247.
https://digitalcommons.library.tmc.edu/dissertations/AAI3328247