EGFR and Notch signaling pathways are regulated by distinct isoforms of Drosophila cbl

Yuan Wang, The University of Texas Graduate School of Biomedical Sciences at Houston

Abstract

Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, the appropriate spatial and temporal down-regulation of signaling receptors is essential for normal development and homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of growth factor receptors through ubiquitin-mediated endocytosis and lysosomal degradation. Here, we report the D-cbl mutant phenotypes in the Drosophila eye. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Many of these phenotypes are caused by lack of down-regulation of the Drosophila EGFR signaling. However, not all D-cbl phenotypes can be explained by inappropriate EGFR activity. We found that D-Cbl also negatively regulates Notch activity during eye and wing development. D-cbl produces two isoforms by alternative splicing. Strikingly, the long isoform, D-CblL, preferentially regulates the EGFR, whereas the short isoform, D-CblS, preferentially regulates Notch. Taken together, these data suggest that D-Cbl controls at least two signaling pathways, EGFR and Notch, through production of two alternatively spliced isoforms during development in Drosophila.

Subject Area

Molecular biology|Genetics

Recommended Citation

Wang, Yuan, "EGFR and Notch signaling pathways are regulated by distinct isoforms of Drosophila cbl" (2008). Texas Medical Center Dissertations (via ProQuest). AAI3328248.
https://digitalcommons.library.tmc.edu/dissertations/AAI3328248

Share

COinS