Association of folate metabolic pathway genes with human spina bifida meningomyelocele

Michelle R O'Byrne, The University of Texas School of Public Health

Abstract

Neural tube defects including spina bifida meningomyelocele (SBMM) are common malformations of the brain and spinal cord, and include all abnormalities resulting from lack of closure of the developing neural tube during embryological development. The specific aims of this study were to determine if single nucleotide polymorphic variants (SNPs) in the folate/homocysteine metabolic pathway genes confer a risk for NTD susceptibility within this SBMM population. In completion of the first specific aim, two novel SNPs were identified in the FOLR1 gene in Chromosome 11of patients including one in non-coding exon 1 with a C → T transition at nucleotide position 71578317 and another in non-coding exon 3 with a T → G transversion at nucleotide position 71579123. It will be important to determine if these variants are present in the respective parents of these individuals. If they are in fact de novo variants, then these SNPs may be more likely to contribute to the birth defect. The second project aim was to analyze genotypes associated with SBMM risk by transmission disequilibrium tests (TDT) and association was detected on several SNPs across the folate metabolic pathway genes in this population. SNPs with significant RC-TDT values were found within the DHFR gene (rs1650723), the MTRR gene (rs327592), the FOLR2 gene (rs13908), four tightly linked variants in the FOLR3 gene (rs7925545, rs7926875, rs7926987, rs7926360) and a variant in the SLC19A1 gene (rs1888530). The product of each of these genes performs a vital function in the folate metabolic pathway. It is conceivable, therefore, that if the individual SNP or SNPs can be proven to perturb the function in some way that they may be involved in the disruption of folate metabolism and in the resulting birth defect. Validating the results of this study in other independent populations will further strengthen the evidence that dysfunction of folate enzymes and receptors may confer SBMM risk in humans.

Subject Area

Molecular biology|Genetics|Epidemiology

Recommended Citation

O'Byrne, Michelle R, "Association of folate metabolic pathway genes with human spina bifida meningomyelocele" (2010). Texas Medical Center Dissertations (via ProQuest). AAI3387562.
https://digitalcommons.library.tmc.edu/dissertations/AAI3387562

Share

COinS