Insight into the strand exchange reaction promoted by the RecA protein of Escherichia coli
Abstract
In vitro, RecA protein catalyses the exchange of single strands of DNA between different DNA molecules with sequence complementarity. In order to gain insight into this complex reaction and the roles of ATP binding and hydrolysis, two different approaches have been taken. The first is to use short single-stranded deoxyoligonucleotides as the ssDNA in strand exchange. These were used to determine the signal for hydrolysis and the structure of the RecA-DNA complex that hydrolyses ATP. I present a defined kinetic analysis of the nucleotide triphosphatase activity of RecA protein using short oligonucleotides as ssDNA cofactor. I compare the effects of both homopolymers and mixed base composition oligomers on the ATPase activity of RecA protein. I examine the steady state kinetic parameters of the ATPase reaction using these oligonucleotides as ssDNA cofactor, and show that although RecA can both bind to, and utilise, oligonucleotides 7 to 20 residues in length to support the repressor cleavage activity of RecA, these oligonucleotides are unable to efficiently stimulate the ATPase activity of RecA protein. I show that the K$\sb{\rm m}\sp{\rm ATP}$, the Hill coefficient for ATP binding, the extent of reaction, and k$\sb{\rm cat}$ are all a function of ssDNA chain length and that secondary structure may also play a role in determining the effects of a particular chain length on the ATPase activity of RecA protein. The second approach is to utilise one of the many mutants of RecA to gain insight into this complex reaction. The mutant selected was RecA1332. Surprisingly, in vitro, this mutant possesses a DNA-dependent ATPase activity. The K$\sb{\rm m}\sp{\rm ATP}$, Hill coefficient for ATP binding, and K$\sb{\rm m}\sp{\rm DNA}$ are similar to that of wild type. k$\sb{\rm cat}$ for the ATPase activity is reduced 3 to 12-fold, however. RecA1332 is unable to use deoxyoligonucleotides as DNA cofactors in the ATPase reaction, and demonstrates an increased sensitivity to inhibition by monovalent ions. It is able to perform strand exchange with ATP and ATP$\lbrack\gamma\rbrack$S but not with UTP, whereas the wild type protein is able to use all three nucleotide triphosphates. RecA1332 appears to be slowed in its ability to form intermediates and to convert these intermediates to products. (Abstract shortened by UMI.)
Subject Area
Genetics|Microbiology|Molecular biology
Recommended Citation
Bianco, Piero Rinaldo, "Insight into the strand exchange reaction promoted by the RecA protein of Escherichia coli" (1993). Texas Medical Center Dissertations (via ProQuest). AAI9409593.
https://digitalcommons.library.tmc.edu/dissertations/AAI9409593