Duncan NRI Faculty and Staff Publications
Language
English
Publication Date
3-15-2023
Journal
Neuron
DOI
10.1016/j.neuron.2022.12.012
PMID
36610398
Abstract
Tauopathies are neurodegenerative diseases that involve the pathological accumulation of tau proteins; in this family are Alzheimer disease, corticobasal degeneration, and chronic traumatic encephalopathy, among others. Hypothesizing that reducing this accumulation could mitigate pathogenesis, we performed a cross-species genetic screen targeting 6,600 potentially druggable genes in human cells and Drosophila. We found and validated 83 hits in cells and further validated 11 hits in the mouse brain. Three of these hits (USP7, RNF130, and RNF149) converge on the C terminus of Hsc70-interacting protein (CHIP) to regulate tau levels, highlighting the role of CHIP in maintaining tau proteostasis in the brain. Knockdown of each of these three genes in adult tauopathy mice reduced tau levels and rescued the disease phenotypes. This study thus identifies several points of intervention to reduce tau levels and demonstrates that reduction of tau levels via regulation of this pathway is a viable therapeutic strategy for Alzheimer disease and other tauopathies.
Keywords
Adult, Animals, Humans, Mice, Alzheimer Disease, Brain, Drosophila, tau Proteins, Tauopathies, Ubiquitin-Specific Peptidase 7, RNF130, RNF149, USP7, genetic screens, modifier, neurodegeneration, tau levels, ubiquitination
Published Open-Access
yes
Recommended Citation
Kim, Jiyoen; de Haro, Maria; Al-Ramahi, Ismael; et al., "Evolutionarily Conserved Regulators of Tau Identify Targets for New Therapies" (2023). Duncan NRI Faculty and Staff Publications. 124.
https://digitalcommons.library.tmc.edu/duncar_nri_pub/124
Included in
Genetic Phenomena Commons, Medical Genetics Commons, Neurology Commons, Neurosciences Commons