Duncan NRI Faculty and Staff Publications

Language

English

Publication Date

1-1-2025

Journal

Bioinformatics Advances

DOI

10.1093/bioadv/vbaf148

PMID

40666130

PMCID

PMC12263109

PubMedCentral® Posted Date

6-24-2025

PubMedCentral® Full Text Version

Post-print

Abstract

Motivation: Rare diseases remain difficult to diagnose due to limited patient data and genetic diversity, with many cases remaining undiagnosed despite advances in variant prioritization tools. While large language models have shown promise in medical applications, their optimal application for trustworthy and accurate gene prioritization downstream of modern prioritization tools has not been systematically evaluated.

Results: We benchmarked various language models for gene prioritization using multi-agent and Human Phenotype Ontology classification approaches to categorize patient cases by phenotype-based solvability levels. To address language model limitations in ranking large gene sets, we implemented a divide-and-conquer strategy with mini-batching and token limiting for improved efficiency. GPT-4 outperformed other language models across all patient datasets, demonstrating superior accuracy in ranking causal genes. Multi-agent and Human Phenotype Ontology classification approaches effectively distinguished between confidently-solved and challenging cases. However, we observed bias toward well-studied genes and input order sensitivity as notable language model limitations. Our divide-and-conquer strategy enhanced accuracy, overcoming positional and gene frequency biases in literature. This framework optimized the overall process for identifying disease-causal genes compared to baseline evaluation, better enabling targeted diagnostic and therapeutic interventions and streamlining diagnosis of rare genetic disorders.

Availability and implementation: Software and additional material is available at: https://github.com/LiuzLab/GPT-Diagnosis

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.