Duncan NRI Faculty and Staff Publications

Language

English

Publication Date

1-1-2025

Journal

PLoS One

DOI

10.1371/journal.pone.0324143

PMID

40498764

PMCID

PMC12157166

PubMedCentral® Posted Date

6-11-2025

PubMedCentral® Full Text Version

Post-print

Abstract

Peroxisomal Biogenesis Disorders Zellweger Spectrum (PBD-ZSD) disorders are a group of autosomal recessive defects in peroxisome formation that produce a multi-systemic disease presenting at birth or in childhood. Well documented clinical biomarkers such as elevated very long chain fatty acids (VLCFA) are key biochemical diagnostic findings in these conditions. Additional, secondary biochemical alterations such as elevated very long chain lysophosphatidylcholines are allowing newborn screening for peroxisomal disease. In addition, a more widespread impact on metabolism and lipids is increasingly being documented by metabolomic and lipidomic studies. Here we utilize Drosophila models of pex2 and pex16 as well as human plasma from individuals with PEX1 mutations. We identify phospholipid abnormalities in Drosophila larvae and brain characterized by differences in the quantities of phosphatidylcholine (PC) and phosphatidylethanolamines (PE) with long chain lengths and reduced levels of intermediate chain lengths. For diacylglycerol (DAG), the precursor of PE and PC through the Kennedy pathway, the intermediate chain lengths are increased suggesting an imbalance between DAGs and PE and PC that suggests the two acyl chain pools are not in equilibrium. Altered acyl chain lengths are also observed in PE ceramides in the fly models. Interestingly, plasma from human subjects exhibit phospholipid alterations similar to the fly model. Moreover, human plasma shows reduced levels of sphingomyelin with 18 and 22 carbon lengths but normal levels of C24. Our results suggest that peroxisomal biogenesis defects alter shuttling of the acyl chains of multiple phospholipid and ceramide lipid classes. In contrast, DAG species with intermediate fatty acids are actually more abundant in PBD. These data suggest an imbalance between de novo synthesis of PC and PE through the Kennedy pathway and remodeling of existing PC and PE through the Lands cycle. This imbalance is likely due to overabundance of very long acyl chains in PBD and a subsequent imbalance due to substrate channeling effects. Given the fundamental role of phospholipid and sphingolipids in nervous system functions, these observations suggest PBD-ZSD are diseases characterized by widespread cell membrane lipid abnormalities.

Keywords

Animals, Humans, Peroxisomal Disorders, Phospholipids, Disease Models, Animal, Sphingolipids, Peroxisomes, Drosophila melanogaster, Drosophila Proteins, Mutation, Peroxisomal Targeting Signal 2 Receptor, Peroxins, Drosophila, Membrane Proteins, Zellweger Syndrome, ATPases Associated with Diverse Cellular Activities

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.