Publication Date
4-1-2014
Journal
The Texas Heart Journal
DOI
10.14503/THIJ-12-3012
PMID
24808775
Publication Date(s)
April 2014
Language
English
PMCID
PMC4004489
PubMedCentral® Posted Date
4-1-2014
PubMedCentral® Full Text Version
Post-Print
Published Open-Access
yes
Keywords
Biological markers, blood; hypertension, pulmonary/blood/diagnosis/etiology; intercellular adhesion molecule-1/blood; prospective studies, cross-sectional
Copyright
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
This prospective cross-sectional study attempted to determine both the usefulness of the serum intercellular adhesion molecule-1 (ICAM-1) as a biomarker for pulmonary artery hypertension secondary to congenital heart disease and the nature of this marker's association with catheter angiographic findings.
Our study included a total of 70 male and female children, comprising 30 patients with both pulmonary artery hypertension and congenital heart disease, 20 patients with congenital heart disease alone, and 20 healthy control subjects. Levels of ICAM-1 in plasma samples from all groups were measured by the enzyme-linked immunosorbent assay method. Cardiac catheterization was also performed in all patients.
The mean serum ICAM-1 levels in pediatric patients who had congenital heart disease with and without pulmonary artery hypertension were 349.6 ± 72.9 ng/mL and 312.3 ± 69.5 ng/mL, respectively (P=0.002). In healthy control subjects, the mean serum ICAM-1 level was 231.4 ± 60.4 ng/mL.
According to the results of this study, the ICAM-1 level of the pulmonary artery hypertension group was significantly higher than those of the congenital heart disease group and the healthy control group. Correlation analysis showed that ICAM-1 level was correlated with systolic and mean pulmonary artery pressures (r=0.62, P=0.001; r=0.57, P=0.001)—which are 2 important values used in diagnosis of pulmonary artery hypertension. Moreover, receiver operating characteristic analysis yielded consistent results for the prediction of pulmonary artery hypertension. Therefore, we conclude that ICAM-1 has potential use as a biomarker for the diagnosis and follow-up of pulmonary artery hypertension.